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Long-surface-wave instability in dense granular flows down inclined planes is analysed
using recently proposed three-dimensional constitutive equations. A full linear stability
analysis of the local governing equations is performed and compared to previous
experimental results obtained with glass beads. We show that the proposed rheology is
able to capture all the features of the instability quantitatively. In particular, it predicts
well the behaviour and scaling for the cutoff frequency of the instability observed in
the experiments. This result gives strong support for the three-dimensional rheology
proposed and suggests new terms in the Saint-Venant equations used to describe
free-surface granular flows.

1. Introduction
Finding constitutive equations for dense granular flows has been the subject of

many studies in the past decade and is still a matter of debate. For free-surface flows,
this absence of local equations has led to the development of depth-averaged models
(Saint-Venant equations), which have been applied to various configurations such as
flows down inclined planes (Savage & Hutter 1989; Pouliquen & Forterre 2002), free-
surface avalanches (Douady, Andreotti & Daerr 1999) and pile collapses (Balmforth
& Kerswell 2005; Lajeunesse, Monnier & Homsy 2005). However, although quite
successful, these simplified approaches rely on constraining assumptions and lack a
general rheological description. The recent local rheology described in GDR MiDi
(2004) is in this sense very promising. It consists of writing the rheology as a local
friction law, i.e. the local shear stress is proportional to the local normal stress, the
friction coefficient being a function of the shear rate and normal stress (da Cruz
et al. 2005; Iordanoff & Khonsari 2004). Using this scalar rheology, it is possible
to describe in a same framework several simple flows varying in one direction, such
as plane Couette flows, flows down inclined planes and two-dimensional heap flows
(GDR MiDi 2004; Jop, Forterre & Pouliquen 2005). However, this simple scalar law
is unable to predict more complex flows, when shears in different directions exist.

A three-dimensional generalization of the local rheology has recently been proposed
by Jop, Forterre & Pouliquen (2006). As a first test, these tensorial constitutive
equations have been used to quantitatively predict the complex three-dimensional
flow pattern obtained when a granular heap flow is confined between rough walls.
Another example of granular flow that exhibits shears in different directions is the
long-surface-wave instability (or Kapitza instability or roll waves), observed when a
granular layer is flowing down a rough inclined plane. When surface waves occur,
invariance along the flow is broken and streamwise velocity gradients exist as well as
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shears across the layer. This instability should therefore represent another non-trivial
configuration for testing the three-dimensional rheology proposed by Jop et al. (2006).

In a previous study, Forterre & Pouliquen (2003) had experimentally investigated
the linear regime of the long-surface-wave instability using glass beads (flow threshold,
dispersion relation). The experimental results were compared with a linear stability
analysis of a simple first-order Saint-Venant model incorporating a phenomenological
law for the basal friction. Although the agreement was relatively good for the stability
threshold, some important features of the instability were not predicted using this
simple depth-averaged approach. The most important discrepancy concerned the
cutoff frequency of the instability. When the flow was unstable, the Saint-Venant
equations predicted that all wavelengths grew, whereas in the experiment a cutoff
frequency was observed above which short wavelengths were stabilized. This damping
of short wavelengths is likely to come from the dissipation due to flow gradients in the
streamwise direction. However, these gradients are not taken into account in a simple
first-order model and require knowledge of the full three-dimensional constitutive
equations to be computed. A second limitation of the Saint-Venant model used is
that it requires an assumption about the shape of the depth velocity profile. For dense
flows down inclined planes, discrete numerical simulations suggest that the velocity
profile is Bagnold-like (Ertas et al. 2001; GDR MiDi 2004). Yet, the Saint-Venant
model matched better the experiments when the velocity profile was assumed uniform
rather than Bagnold-like (Forterre & Pouliquen 2003). Finally, it is well known in
the case of Newtonian fluids that, even when the velocity profile is known, simple
first-order Saint-Venant equations fail to predict quantitatively the stability threshold
of Kapitza waves. In order to obtain exact results, one has eventually to come back to
the full three-dimensional constitutive equations, i.e. the Navier–Stokes equations, and
perform a stability analysis from the local mass and momentum equations (Yih 1963).

This is precisely the approach we shall use in this paper. We will take advantage
of the recent constitutive equations proposed by Jop et al. (2006) to perform a
full linear stability analysis of dense granular flows down inclined planes from the
local governing equations (§ 2). The results will be compared with the experimental
measurements of Forterre & Pouliquen (2003) in order to test the relevance of the
proposed rheology (§ 3). In particular, we will focus on the cutoff frequency of the
instability and ask whether the proposed rheology is able to predict its experimental
scaling. Finally, we will discuss consequences of the proposed tensorial rheology for
Saint-Venant models classically used to describe free-surface granular flows (§ 4).

2. Linear stability analysis
In this paper, we use the constitutive equations recently proposed by Jop et al.

(2006) in order to describe dense granular flows. These equations generalize the
scalar rheology presented in GDR MiDi (2004) and Jop et al. (2005). The main
assumptions consist of neglecting the small variations of volume fraction in dense
flows and assuming the pressure to be isotropic. The constitutive equations for the
internal stress tensor σij are then given by

σij = −Pδij + τij , τij =
µ(I )P

γ̇
γ̇ij (2.1)

with

µ(I ) = µs +
µ2 − µs

I0/I + 1
, I = γ̇ d/

√
P/ρs, (2.2)
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where γ̇ij ≡ (∂jui + ∂iuj ) is the strain rate tensor, {u}i=1,2,3 are the components of the

velocity field and γ̇ ≡
√

1
2
γ̇ij γ̇ij . In this rheology, P represents the pressure, d is the

particle diameter, ρs is the particle density and (µs , µ2, I0) are constants characterizing
the shape of the function µ(I ) (see Jop et al. 2006 for a discussion of the law).

Having the constitutive equations, we are now able to write the local governing
equations for a granular layer of thickness h(x, t) flowing down an inclined plane
that makes an angle θ with respect to horizontal. Considering only two-dimensional
perturbations, the local mass and momentum balances for an incompressible flow are

∂u

∂x
+

∂v

∂z
= 0, (2.3)

ρsφ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂z

)
= ρsφg sin θ − ∂P

∂x
+

∂τxx

∂x
+

∂τxz

∂z
, (2.4)

ρsφ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂z

)
= −ρsφg cos θ − ∂P

∂z
+

∂τzx

∂x
+

∂τzz

∂z
, (2.5)

where u (resp. v) represents the x (resp. z) velocity component of the flow, φ is the
constant volume fraction and g is the acceleration due to gravity. The associated
boundary conditions are

u = v = 0 at z = 0, (2.6)

∂h

∂t
+ u

∂h

∂x
− v = 0

−P
∂h

∂x
+ τxx

∂h

∂x
− τxz = 0

P + τxz

∂h

∂x
− τzz = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

at z = h(x, t). (2.7)

Equation (2.6) is the no-slip condition imposed on the rough inclined plane, whereas
equations (2.7) mean that the surface z =h(x, t) is a stress-free material interface.

The steady uniform solution of this set of equations, i.e. h =h0 = const, u = u0(z),
v =0, is easy to obtain (GDR MiDi 2004). The pressure distribution is hydrostatic,
P0(z) = ρsφg(h0−z) cos θ , and the velocity profile is given by a Bagnold-like expression:
u0(z) = (2Iθ/3d)

√
φg cos θ(h0

3/2 − (h0 − z)3/2) where Iθ ≡ µ−1(tan θ). In the following,
the governing equations and boundary conditions (2.1)–(2.7) will be written in terms of
dimensionless variables using the thickness h0 as the length scale, the depth-averaged
velocity ū0 = (1/h0)

∫ h0

0
u0(z) dz =(2/5)Iθ

√
φgd cos θ (h0/d)3/2 as the velocity scale and

the pressure at the bottom P0(0) = ρsφgh0 cos θ as the stress scale. Using this scaling,
the two dimensionless control parameters of the problem are the angle θ and the
Froude number F defined by

F =
ū0√

gh0 cos θ
=

2

5
Iθ

√
φ

(
h0

d

)
. (2.8)

All physical quantities in what follows will be made dimensionless according to the
above scalings. However, we will not change the notation for the sake of simplicity.

To study the stability of the steady uniform solution found above, we now perturb
the flow about the basic state and seek normal-mode solutions as: u = u0(z) +
û(z) exp i(kx − ωt), v = v̂(z) exp i(kx − ωt), P = P0(z) + P̂ (z) exp i(kx − ωt) and h =
1 + ĥ exp i(kx − ωt), where k is the longitudinal wavenumber, ω is the pulsation and
(û, v̂, P̂ , ĥ) � 1. By substituting the perturbed flow into the dimensionless version of
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equations (2.1)–(2.7) and then linearizing about the basic state, we obtain a set of
linear ordinary differential equations for the vertical perturbation v̂ and the pressure
perturbation P̂ given by(

kF 2 du0

dz
− ik2 dg0

dz

)
v̂ + (−kF 2u0(z) + ik2f0(z))

dv̂

dz
− i

d

dz

(
g0(z)

d2v̂

dz2

)

+ ik2P̂ − e0k
dP̂

dz
= −ωF 2 dv̂

dz
, (2.9)

(ikF 2u0(z) + k2g0(z))v̂ − 2
dη0

dz

dv̂

dz
− f0(z)

d2v̂

dz2
− ike0P̂ +

dP̂

dz
= iωF 2v̂, (2.10)

with the boundary conditions:

v̂ =
dv̂

dz
= 0 at z = 0, (2.11)

v̂ − iku0(1)P̂ = −iωP̂

−ig0(1)
d2v̂

dz2
+ k(tan θ − e0)P̂ = 0

⎫⎬
⎭ at z = 1. (2.12)

Here u0, η0, e0, f0 and g0 are dimensionless functions of the base state, which
are given in Appendix A. Note that we have used the mass conservation equation
and the boundary conditions to eliminate the horizontal velocity and free-surface
perturbations.

This system of two ordinary differential equations (2.9)–(2.10) together with the four
boundary conditions (2.11)–(2.12) forms an eigenvalue problem, i.e. for a given basic
flow (u0, P0, h0) and pulsation ω, a non-zero solution (v̂, P̂ ) exists only for specific
values of the wavenumber k. In order to obtain the full dispersion relation (k,w), we
have solved (2.9)–(2.12) numerically using a Chebychev spectral collocation method
(Gottlieb, Hussaini, & Orszag 1984). However, as the long-surface-wave instability is
a zero-wavenumber instability, it is interesting to perform an asymptotic expansion
for small wavenumbers k in order to obtain analytically the stability threshold (Yih
1963). This analysis is presented in Appendix B. The flow is found to be unstable
above a critical Froude number Fc given by

Fc =
4

5

√
1 − 3

2
tan2 θ +

3

4

(µ2 − tan θ)(tan θ − µs)

µ2 − µs

tan θ. (2.13)

3. Results and comparison with experiments
In this section, predictions of the above stability analysis are compared with the ex-

perimental results of Forterre & Pouliquen (2003) using glass beads. To do so, the
rheological parameters (µs , µ2, I0) entering (2.2) must be specified. We have chosen the
same values as those used by Jop et al. (2005, 2006): µs = tan(20.9◦), µ2 = tan(32.76◦)
and I0 = 0.279. These values were calibrated using the results on steady uniform
flows down rough planes of Forterre & Pouliquen (2003) (see Jop et al. 2005 for the
computation of these parameters). This choice means that no fitting parameter exists
when we compare results from the stability analysis to the experiments.

We first focus on the stability threshold. In figure 1, the critical Froude number Fc

predicted by the three-dimensional rheology (equation (2.13), solid line) is presented
together with the experimental critical Froude number. A quantitative agreement
is observed, although the theoretical threshold is about 10 % higher than the
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Figure 1. Stability diagram of the flow (Fc, θ ). Comparison between theory (solid line) and
experiments (�, Forterre & Pouliquen 2003). Predictions of the Forterre & Pouliquen (2003)
Saint-Venant model are given for comparison: dashed line, Bagnold velocity profile (α = 5/4);
dotted line, plug flow (α = 1).

experimental one. We also present in this figure predictions of the Saint-Venant
equations (Forterre & Pouliquen 2003). In this case, there is an adjustable parameter
α connected to the shape of the velocity profile across the layer (see Appendix C). As
observed with classical fluids, the simple Saint-Venant model strongly overestimates
the stability threshold of the Kapitza instability when the shape of the velocity profile
is deduced from steady uniform flows, i.e. when the velocity profile is Bagnold-like
(dashed line). One obtains a better agreement when the velocity profile is arbitrarily
assumed uniform (dotted line).

We now turn to the full dispersion relation of the instability. Experimentally, the
dispersion relation was determined by forcing the flow periodically at the entrance and
by measuring the spatial growth rate and phase velocity as a function of the forcing fre-
quency. To compare theory and experiment, we therefore solve the eigenvalue problem
(2.9)–(2.12) assuming the pulsation ω to be real and the wavenumber k complex. The
spatial growth rate is then given by σ = −Im(k) and the phase velocity by c = ω/Re(k).

Figure 2 shows a typical dispersion relation obtained numerically together with the
experimental results for the same set of parameters: θ = 29◦, F = 1.02. We observe
that the stability analysis using the three-dimensional rheology is able to describe the
whole behaviour of the dispersion relation quantitatively. In particular, the theory
predicts the existence of a cutoff frequency ωc for the instability, which is closed to
the experimental one (figure 2a). This result strongly contrasts with predictions of
the Saint-Venant model shown in the same figure (dashed line and dotted line). The
first-order Saint-Venant equations do not predict a cutoff frequency for the waves,
regardless of the velocity profile’s shape. They also strongly underestimate the growth
rate when the Bagnold velocity profile is taken into account (dashed line).

Systematic comparison between predictions of the three-dimensional rheology and
experiments is presented in figure 3, which gives the experimental and computed
cutoff frequency for all Froude numbers and inclinations investigated experimentally.
A good agreement is again observed between theory and experiment, although the
experimental measurements appear lower than the predictions by 20 %. It is interesting
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Figure 2. Theoretical (solid line) and experimental (�, Forterre & Pouliquen 2003) spatial dis-
persion relation for θ = 29◦ and F = 1.02: (a) spatial dimensionless growth rate, (b) dimension-
less phase velocity, as functions of the dimensionless pulsation. Predictions of the Forterre &
Pouliquen (2003) Saint-Venant model are given for a Bagnold velocity profile (dashed line,
α = 5/4) and a plug flow (dotted line, α =1).

–0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

F – Fc (θ)

ωc

29°
28°
27°
26°
25°
24°

29°
28°
27°
26°
25°
24°

Figure 3. Comparison between theory (lines) and experiments (symbols, Forterre & Pouliquen
2003) for the dimensionless cutoff frequency of the instability ωc above criticality F − Fc(θ )
(24◦ � θ � 29◦). The experimental cutoff frequency is made dimensionless using the measured
mean velocity and thickness for each point.

to note that both the predicted and experimental neutral stability curves only weakly
depend upon the angle of inclination. We will see in the next section that this collapse
is not straightforward and strongly reflects the form of the constitutive equations.

4. Discussion
The linear stability analysis of long-wave formation using the constitutive equations

proposed by Jop et al. (2006) therefore predicts the main features of the instability
observed experimentally with glass beads. In particular, the stabilization of short
wavelengths, which was not predicted using a simple depth-averaged approach, is now
captured quantitatively. This result suggests that the three-dimensional generalization
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Figure 4. (a) Neutral stability curves predicted by the modified Saint-Venant model with
a = 0.1 (see Appendix C). (b) Same predictions when the effective viscosity is replaced by a
Bagnold-like viscosity η̄B = aρsd

2ū/h (a = 0.2). In both cases, α = 1.

of the local rheology described in GDR Midi (2004) in terms of an ‘effective viscosity’,
ηeff ≡ µ(I )P/γ̇ (see (2.1)), correctly describes the additional dissipation due to the
longitudinal velocity gradients, at least at the onset of wave formation. It is worth
noting that no fitting parameter has been used in this study. The constitutive law
(2.1)–(2.2) is calibrated using steady flow experiments on inclined planes and is
quantitatively the same as the one used by Jop et al. (2006) to predict confined heap
flows. Moreover, our full stability analysis based on the local governing equations does
not introduce extra parameters, as it is usually the case in depth-averaged procedures.
The good agreement between the stability analysis and the experiments is therefore
additional validation of the three-dimensional law proposed by Jop et al. (2006).

Knowledge of the local three-dimensional rheology also allows us to modify the
Saint-Venant equations used to describe free-surface granular flows, in order to cap-
ture the longitudinal dissipation. Formally, this requires an expansion of the shallow-
water approximation up to the second order. Here we instead adopt a heuristic
approach by simply adding to the Saint-Venant model used by Forterre &

Pouliquen (2003) the depth-averaged longitudinal viscous stress: ∂(
∫ h

0
τxx dz)/∂x.

Using the constitutive law (2.1)–(2.2) and rewritting the effective viscosity as
ηeff =ρsd

2(µ(I )/I 2)γ̇ , we can approximate this term as

∂

∂x

∫ h

0

τxx dz =
∂

∂x

∫ h

0

2ρsd
2 µ(I )

I 2
γ̇

∂u

∂x
dz ≈ ∂

∂x

(
η̄eff

∂hū

∂x

)
, (4.1)

where η̄eff ∼ ρsd
2(tan θ/I 2

θ )ū/h is a mean effective viscosity and ū =(1/h)
∫ h

0
u dz is the

depth-averaged velocity (here and hereafter, the quantities are not dimensionless for
clarity). The resulting modified Saint-Venant model is given in Appendix C. A linear
stability analysis of these equations leads to results shown in figure 4(a) (computation
not shown). The cutoff frequency of the instability is now predicted, as well as the
collapse of the neutral stability curves for different angles of inclination. It is interesting
to investigate to what extent this collapse is constrained by the special form of the
effective viscosity embedded in the three-dimensional rheology. To do so, we present in
figure 4(b) the prediction of the same model, but with the mean effective viscosity η̄eff

replaced by a simple Bagnold scaling η̄B ∼ ρsd
2ū/h. The striking result is that the neut-

ral curves now clearly split into the range of angles explored experimentally. A closer
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investigation of the longitudinal stress (4.1) reveals that this difference comes from the
particular behaviour of the effective viscosity close to the flow threshold: η̄eff diverges
when Iθ → 0 whereas η̄B vanishes at threshold. The collapse of the cutoff frequencies
is therefore a non-trivial signature of the underlying three-dimensional rheology and
gives more support for the relevance of the law proposed by Jop et al. (2006).

5. Conclusion
In this paper, we have performed a full linear stability analysis of granular flows

down inclined planes using the three-dimensional constitutive equations recently
proposed by Jop et al. (2006). We have shown that, without any fitting parameters,
the predictions of the stability analysis are in quantitative agreement with the
experiment of Forterre & Pouliquen (2003) using glass beads. In particular, the
theory quantitatively predicts the behaviour of the cutoff frequency of the instability,
not captured by previous depth-averaged approaches.

Our study provides a new validation of the three-dimensional law proposed by Jop
et al. (2006), in a case where velocity gradients perpendicular to the main shear play an
important role. Other geometries involve a complex three-dimensional flow pattern,
such as rotating drum flows or pile collapses. It would be interesting to test the three-
dimensional rheology on these well-documented examples, in order to better explore
the validity of the law. Limits of this rheology exist, which have been described in
Jop et al. (2006). They mainly concern the transition between the solid and liquid-like
behaviour of granular matter close to the flow threshold, where non-local effects and
hysteretic phenomena occur. The proposed rheology also does not predict the small
variations of volume fraction observed in dense flows (see however Pouliquen et al.
2006 for a simple attempt to capture the volume fraction). Another important issue
concerns the extension of this approach to flows composed of more complex particles
like sand, for which the instability properties are peculiar (Forterre & Pouliquen 2003).
It has already been shown that the simple local rheology µ(I ) is unable to describe the
flow of sand down inclined planes (GDR MiDi 2004). Our stability analysis therefore
cannot be applied to predict quantitatively the instability properties in this case.
However, despite these limits, the proposed rheology provides a minimal model that
could be used to quantitatively predict the main ‘viscous’ properties of granular flows,
when a full tensorial relation is needed. The three-dimensional rheology could also
help to improve the Saint-Venant models used to describe free-surface granular flows.
In this study, we have proposed a simple approach that contains the longitudinal
‘viscous’ dissipation. More precise depth-averaged models, in the spirit of those written
for Newtonian (Ruyer-Quil & Manneville 2000) or visco-plastic fluids (Balmforth &
Liu 2004), still have to be derived.

I would like to thank Pierre Jop and Olivier Pouliquen for stimulating discussions.

Appendix A
The dimensionless functions of the base state given in (2.9)–(2.12) are

u0(z) = (5/3)
(
1 − (1 − z)3/2

)
, η0(z) = (2/5) tan θ (1 − z)1/2,

e0 = tan θ − [(µ2 − tan θ)(tan θ − µs)/(2(µ2 − µs))],

f0(z) = η0(z) − [(4/25) (tan θ − 2e0)) (du0/dz)],

g0(z) = η0(z) + [(4/25) (tan θ − 2e0)) (du0/dz)].

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 1)
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Note that the functions f0(z) and g0(z) vanish at the free surface z = 1. This
introduces a difficulty when solving the eigenvalue problem (2.9)–(2.12) since the
product g0(z) d2v̂/dz2 appears in the boundary condition at z = 1. To remove this
singularity, we eliminate d2v̂/dz2 in (2.9)–(2.12) by introducing the new variable
Â(z) ≡ g0(z)d

2v̂/dz2, which is regular when z → 1.

Appendix B
Here we give the asymptotic expansion k → 0 of the eigenvalue problem (2.9)–(2.12)

in the case of temporal stability, i.e. k is real and ω is complex. We follow the procedure
proposed originally by Yih (1963) in the context of Newtonian fluids and introduce
the stream function ψ̂(z) and the phase velocity c(k) defined by ψ̂ ≡ (i/k)v̂ and
c ≡ ω/k. The stream function ψ̂ , the pressure P̂ and the phase velocity c are then
expanded in powers of the small parameter k as

ψ̂ = ψ̂
(0)

+ ikψ̂ (1) + k2ψ̂ (2) + · · · ,

P̂ = P̂
(0)

+ ikP̂ (1) + k2P̂ (2) + · · · ,
c = c(0) + ikc(1) + k2c(2) + · · · .

⎫⎪⎪⎬
⎪⎪⎭ (B 1)

The solution of (2.9)–(2.12) at order zero gives

ψ̂
(0)

(z) = (1 − z)3/2 + (3/2)z − 1,

P̂
(0)

(z) = 3/5,

c(0) = 5/2.

⎫⎪⎬
⎪⎭ (B 2)

Note that the eigenfunctions ψ̂ and the pressure P̂ are arbitrarily normalized in order
to have ψ̂(1) = 1/2. To find the stability threshold, the problem has to be solved at
order one, which after some algebra gives

ψ̂
(1)

(z) = (2(tan θ − e0))
−1

[
− (5/48)F 2(1 − z)4 + ζ (1 − z)5/2

+ (3/2)e0 tan θ z2 + 5ζ (1 − z)3/2 + γ z + δ
]
,

P̂
(1)

(z) = −(3/5) tan θ(1 − z) − (3/2)(1 − z)1/2 + P̂
(1)

(1),

c(1) = (2(tan θ − e0))
−1[(25/16)F 2 − 1 + (3/2)e0 tan θ],

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B 3)

with ζ = (5/6)F 2 − (2/5)(1 + e0 tan θ), γ = −(5/12)F 2 − 5ζ , δ = (15/16)F 2 + 4ζ and

P̂
(1)

(1) = (6/5)[ψ̂
(1)

(1) − c(1)P̂
(0)

(1)]. The flow is unstable when c(1) > 0.

Appendix C
The modified Saint-Venant model is given by

∂h

∂t
+

∂hū

∂x
= 0, (C 1)

ρsφ

(
∂hū

∂t
+ α

∂hū2

∂x

)
=

(
tan θ − µb(ū, h) − ∂h

∂x

)
ρsφgh cos θ

+ aρsd
2 tan θ

I 2
θ

∂

∂x

(
ū

h

∂hū

∂x

)
. (C 2)

Equation (C 1) is the depth-averaged mass conservation. Equation (C 2) is the depth-
averaged momentum equation along the x-direction. The last term of (C 2) is
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new and responsible for the damping of the short wavelengths (a is an unknown
dimensionless coefficient coming from (4.1)). The coefficient α is related to the
assumed velocity profile across the layer and µb(ū, h) is the bottom friction given by
µb(ū, h) = µs + ((µ2 − µs)/((βh

√
gh/ūL0) + 1)), where β/L0 = 0.295I0/d (see Jop et al.

2005 for the connection between µb(ū, h) and µ(I )).
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